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Entropy increase in confined free expansions via molecular dynamics
and smooth-particle applied mechanics
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The eventual entropy increase of an ideal gas undergoing free expansion,DS5k ln(Vfin /V0), requires a
‘‘coarse-grained’’ hydrodynamic description because Gibbs’ fine-grained entropy is unchanged in such a
process. Smooth particle applied mechanics~SPAM! is well suited to the simulation and study of such
problems because the particles in SPAM simulations can be of any size, from microscopic to macroscopic.
SPAM furnishes a natural interpolation, or bridge, linking microscopic molecular dynamics to macroscopic
continuum mechanics. We analyze particle-based simulations of ideal-gas free expansions from both the
microscopic and the macroscopic points of view, comparing several dynamical estimates for the time devel-
opment of the system entropy. Most of the entropy increase occurs rapidly, within a single sound traversal
time. A local comoving version of turbulent hydrodynamics provides the most useful viewpoint for describing
flows of this kind.@S1063-651X~99!07402-4#

PACS number~s!: 47.10.1g, 02.70.Ns, 31.15.Qg, 47.70.2n
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I. FREE EXPANSIONS AND ENTROPY

The ‘‘confined free expansion,’’ which results when
pressurized fluid is first exposed to a vacuum, and then c
fined by a box, is the prototypical irreversible isoenerge
process. During the free expansion and the subseq
equilibration there is no heat exchange with the syste
surroundings and no work is done, establishing that the
pansion process is adiabatic and isoenergetic:DE5DQ
2DW[0. The initial expansion phase is also nearly isent
pic, with the gas cooling as it expands. Over 100 years a
Boltzmann described such expansion processes, emphas
that entropy is not generated until the directed motion
expansion is converted to the disordered motion we call h
@1#.

Once the system reaches the walls confining it, so that
kinetic energy associated with the expansion can be c
verted to ‘‘heat,’’ an entropy increase occurs. The details
this increase are what interest us here. We study the ex
sion of a ‘‘perfect’’ or ‘‘ideal’’ gas, with no explicit dissipa-
tion. Nevertheless, within the system the turbulent decay
the macroscopic velocity and temperature gradients give
to an increasing thermodynamic entropy. With confining e
ternal boundary conditions, which ultimately bring the e
pansion to a halt, there eventually results an undoub
change of state, with a consequent increased entropy.
details of the macroscopic turbulent conversion of orde
motion into heat are complex and hard to treat theoretica

Such an irreversible entropy increase is likewise diffic
to understand at the microscopic level. When Hamilton
mechanics generates the motion of the individual fluid p
ticles, there can be no change in the system’s fine-gra
Gibbs’ entropy. This follows from the constancy of th
phase-space probability densityf, according to Liouville’s
theorem@2#:
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ḟ [0→ṠG[2k~d/dt!^ ln f &52kE ḟ ln f d G[0.

These difficulties in accounting for increases in entropy
ing conventional macroscopic fluid mechanics or mic
scopic statistical mechanics are well-known, currently un
active investigation by researchers in macroscopic tur
lence and microscopic irreversible flows@3,4#, and served to
motivate our interest in exploring accurate numerical so
tions of this problem.

Macroscopic hydrodynamics provides a quantitative e
mate for the irreversible rate of entropy production in ter
of the shear and bulk viscosities, (h,hV), and the heat con-
ductivity k. Unless the temperature and velocity gradie
are too large, the conversion of temperature and velo
differences into ‘‘heat,’’ or internal energy, can be describ
by Newtonian viscosity and linear Fourier heat conductivi
If we ignore the bulk viscosity~which is appropriate for a
monatomic ideal gas! and additionally assume that the tw
remaining transport coefficients are state independent,
local density of the irreversible entropy production fro
Newton’s and Fourier’s linear transport laws becomes

ṡ5~h/T!ė21~k/T2!u¹Tu2,

whereė is an effective shear strain rate. In two dimensio
with the local velocity componentsẋ5u and ẏ5v, the cor-
responding effective shear strain rate is given by

ė2[~ux2vy!21~uy1vx!
2.

From a more simplified point of view one might expect th
most of the entropy increase would occur locally and disc
tinuously, through a complex pattern of interacting sho
1770 ©1999 The American Physical Society
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and rarefaction waves which converts most of the kine
energy of the developing flow directly into heat.

Because the confined free-expansion problem prov
the simplest illustration of the paradoxical properties
Gibbs’ entropy, and can be simulated by a variety of te
niques relatively easily, we have chosen to explore it he
We use a robust and flexible numerical method which p
vides simultaneous insight into both the microscopic a
macroscopic points of view, namely smooth particle appl
mechanics~SPAM!. In the case of a special two-dimension
monatomic ideal gas, this macroscopic method for solv
the field equations of continuum mechanics turns out to
equivalent to ordinary microscopic molecular dynamics@5#.
This link between the microscopic and macroscopic vie
points is described further in Sec. II. In Secs. III and IV, w
describe the details of the macroscopic simulations, and
results. Our conclusions make up Sec. V.

II. THE SMOOTH-PARTICLE DESCRIPTION
OF AN IDEAL GAS

Smooth-particle solution techniques, as developed
Lucy and Monaghan in 1977@6,7# and applied more recentl
to a variety of problems in fluid and solid mechanics@8–10#,
can be used to solve the continuum equations in a sim
and stable, way. In this approach the smooth particles, e
with a massm, and with individual velocities$v i% and inter-
nal energies$mei%, move according to equations of motio
which contain in them the macroscopic equation of state

H mr̈i[mv̇ i52m2(
j

@~P/r2! i1~P/r2! j #•¹ iwi j J .

HereP is the pressure tensor andwi j 5w(r i j ) is the smooth-
particle ‘‘weight function,’’ which describes the spatial in
fluence of each particle on its surroundings. The range
w—typically a few interparticle spacings—is conventiona
denotedh. If the pressure is purely hydrostatic, without she
contributions, as in the two-dimensional ideal gas of inter
here~with E5PV5NkT), the smooth-particle equations o
motion give central forces, with the$ i j % pair contributions
parallel to the corresponding interparticle separation vec
$r i j %. The equilibrium hydrostatic equation of state mod
lates the pair interaction. The densities of theN particles
making up the system,$r i%, are the summed-up contribu
tions from all particles within the rangeh of the smooth-
particle weighting functionw(r ):$r i[m( jw(r i j )%. The
largest contribution to each particle’s density is its own ‘‘s
contribution,’’ mw(0).

When the smooth-particle motion equations are multipl
by the corresponding particle velocities, and summed up,
result is the time-rate-of-change of the laboratory-frame
netic energyK:

K̇5(
i

mv i v̇ i52m2(
i

(
j

@~P/r2! i1~P/r2! j #:~v¹! iwi j

[2~m2/2!(
i

(
j

@~P/r2! i1~P/r2! j #:~v i2v j !¹ iwi j .
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From the macroscopic energy equation for an invis
nonconducting gas,ė52(P/r)¹•v, where the pressureP is
now a scalar, rather than a tensor, the smooth-particle e
tions for the time development of the individual particle i
ternal energies are@6,7#

H mėi5~m2/2!(
j

@~P/r2! i1~P/r2! j #~v i2v j !•¹wi j J .

Here ei is the internal energy per unit mass for particlei.
Thus, in this special inviscid-gas case, the total energyE
1K5m( i@ei1(v i

2/2)# is conserved exactly by the smooth
particle equations:

m(
i

~ ėi1v i v̇ i !5~m2/2!(
i

(
j

@~P/r2! i1~P/r2! j #

3@~v i2v j !2~v i2v j !#•¹ iwi j [0.

The total internal energyE is the thermodynamic state en
ergy, and excludes the additional kinetic energyK due to
convective motions of the gas.

Note that the special polytropic equation of state,P
5(D2/2m)r2, gives particle forces precisely equal to th
negative gradients of a ‘‘weight potential’’W($r i j %)
[mD2( i , jwi j (r i j ). Thus, within an additive constant fo
each particle @the ‘‘self-contributions’’ f(0)
[(mD2/2)wii (0), which do not contribute to the accelera
tions#, the smooth-particle density sums equal twice the c
responding individual smooth-particle internal energy sum
which in turn turn out to be exactly equivalent to each p
ticle’s share of the pairwise-additive interaction energies
Hamiltonian molecular dynamics:F5( i , jf(r i j )[m( iei .
The weighting functionw(r i j )[f(r i j )/mD2 here plays the
role of a microscopic pair potential. Thus all of the ind
vidual macroscopic smooth-particle continuum trajector
are precisely ‘‘isomorphic’’ to corresponding microscop
particle trajectories calculated with molecular dynamics. T
two approaches, macroscopic and microscopic, have ide
cal solutions@5#. We have chosen the symbolD so as to
emphasize the units of the arbitrary constant appearing in
isentropic equation of state. In two space dimensionsD cor-
responds to a diffusion coefficient, the square of a len
divided by a characteristic time. In three space dimensi
the correspondingD would vary as the 5/2 power of a length
again divided by a characteristic time.

The microscopic pressure tensor follows from the vir
theorem@11#. The expression which results,

PV[PKV1PFV5~1/m!(
i

~pp! i1(
i , j

~rF ! i j ,

wherer i j 5r i2r j andFi j is the force on particlei due to its
interaction with particlej, can be evaluated using molecul
dynamics. For a uniformly dense distribution of particles t
sum over pairs of particles approaches an integral:

PFV→~N/2!E
0

`

2pr ~N/V!rF ~r !dr,
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where N/V is the number density of the smooth particle
With the special hydrostatic macroscopic ideal-gas equa
of state,P[(D2/2m)r2, the same integral results, but wit
the interparticle forceF replaced by2mD2¹w. From the
normalization of the weight-function integral,

E
0

`

2prw dr[E
0

`

2pr 2w8dr[1,

the uniform-density limit of the microscopic potential pre
sure,PF, reproduces the complete macroscopic equation
state,P5(D2/2m)r2. The remaining kinetic portion of the
microscopic pressure tensor,PK, corresponds, in the macro
scopic hydrodynamic interpretation, to a local turbulent R
nolds stress,2sReynolds[r@^vv&2^v&^v&# @12#.

Apart from an additive constant, the macroscopic ide
gas entropy isNk ln@(V/N)(E/N)#. We will see that solutions
of the inviscid nonconducting Euler equations for the mot
of such a gas require an additional turbulent correcti
based on local velocity fluctuations, to the internal ene
used in this entropy formula. The macroscopic entropy
quite different from that following from Gibbs’ statistica
mechanics. In Gibbs’ approach, where the potential ene
of the underlying smooth-particle fluid is essentially co
stant, Gibbs entropy isNk ln@(V/N)(K/N)#, and thus lies be-
low the macroscopic entropy byNk ln(E/K). Though this en-
tropy difference does not affect the systematic macrosco
dynamics at all, it does affect fluctuations, as well as rec
rence probabilities, in interesting ways, as is discussed
ther below.

The smooth-particle solutions necessarily approach th
of continuum mechanics as the number of particles is
creased. To approach this limit computationally, it is nec
sary that the range of the weight function be sufficien
large, so that fluctuations can be ignored and, simu
neously, sufficiently small that surface effects can be
nored. We have explored both these effects in simulating
free expansion of a two-dimensional ideal-gas represente
smooth particles.

III. MACROSCOPIC SIMULATIONS
OF FREE EXPANSION USING SPAM

With SPAM, a solution of the partial differential field
equations of continuum mechanics,

$ṙ/r52¹•v;r v̇52¹•P;rė52¹v:P2¹•Q%,

reduces to the solution of a set of ordinary differential eq
tions for the particle motions and energies, with interparti
forces derived from the weight functions$wi j (r i j )% and the
macroscopic equation of state. In the special ideal-gas
we consider here, viscosity and heat conduction are b
absent, so that the heat fluxQ vanishes and the pressure
hydrostatic, withPxx5Pyy5P5re5(D2/2m)r2. The mac-
roscopic energy equation is automatically satisfied in t
case, so that the$ėi% equations need not be solved explicitl
Exploratory simulations, with an assortment of bounda
conditions and weight functions, led us to choose Luc
weight function @6#, with the rangeh large enough,h
.
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56Am/r0, to include several particles, even at the fin
minimum value of the density,rfin5r0/4:

wLucy~r ,h![~5/ph2!@113~r /h!#@12~r /h!#3;

E
0

h

2prw~r !dr[1.

The two-dimensional normalization condition determines
multiplicative constant (5/ph2). The mass, length, and tim
scales are given by the particle massm, the initial square-
lattice spacingAm/r0, andm/(Dr0), respectively.

We simulate a macroscopic free expansion by remov
the four rigid reflecting walls defining anL3L box. We
simultaneously impose~i! periodic boundaries with a
doubled sidelength 2L, so that the volume~area! increases
instantaneously, at constant energy, by a factor 4, and~ii !
small random particle velocities, with zero sum, chosen
that the initial energy per particle is exactly equal to t
large-system static limit,E/N5r0D2/2. The kinetic energy
compensates for the small missing ‘‘surface energy’’
those particles close to the boundary of the initial rigidL
3L box. The large-N number of pairs of interacting par
ticles, for AN/V056/h, decreases from about 60N to about
15N during the evolution toward the lower-density fin
state. Provided that the final state has uniform density,r0/4 ,
conservation of energy predicts an increase in per-part
kinetic energy of 3r0D2/8. From the thermodynamic stand
point we would also hope to find a corresponding entro
increase ofk ln 4 per particle, when the kinetic energy ass
ciated with the irreversible expansion has finally been c
verted into heat. In the absence of any explicit dissipat
transport in the gas we expect the characteristic time for
effective dissipation to be of the order of the sound traver
time, 2L/c. We investigate this expectation, and the sen
tivity of the decay to the number of smooth particles, in t
following section.

IV. SIMULATIONS AND RESULTS

For simplicity, we begin with a square lattice of initia
particle coordinates, with the lattice spacing ofAm/r0

5AV0 /N[1 setting the distance scale. We choose the p
ticle massm[1 and the constitutive constantD[1 to set the
corresponding mass and time scales in the numerical w
In order to quantify surface effects, it is convenient to co
sider the series of simulationsAN52n;4<n<8. Although it
is possible to equilibrate the systems initially, either at co
stant energy or at constant kinetic temperature, and with
ther rigid or periodic boundaries, results for our simpler in
tial conditions are in no way essentially different from tho
other possibilities. We also implemented hexagonal perio
boundaries and carried out a series of fourfold expansio
The resulting time histories were very similar to those o
tained with the slightly simpler square geometry.

We solved the smooth-particle equations of motion w
an accurate fourth-order Runge-Kutta integrator. Time st
of 0.02m/(r0D), or even 0.05m/(r0D), are sufficiently
small for accurate trajectories, as judged by reversing
motion over several hundred time steps. Larger syste
could be simulated relatively easily, on parallel machin
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FIG. 1. Snapshots of a 16 384-particle simulation of the fourfold expansion of an ideal gas, using Lucy’s weighting functionh
56Am/r0. The individual particle locations, as well as grid-based contour representations of the density and kinetic energy, relati
mean flow, are shown at times, relative to the sound traversal time, of$1/8,1/4,1/2,1,2%. In the contour plots the white regions hav
above-average density~middle row! or kinetic energy~bottom row! while the black regions lie below the corresponding averages.
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but the details are already sufficiently clear with the 65 5
particle simulations possible on a serial machine. Dur
each simulation, we monitored the positions, internal a
convective energies, and the corresponding entropies o
particles, as is discussed below.

Figure 1 shows a series of snapshots of particle posit
from a typical simulation, with 16 384 particles. Because
smooth-particle method makes it easy to calculate all
field variables on a regular grid,

H rg[m(
i

wig ;~rv !g[m(
i

v iwig ;

~rvv !g[m(
i

v iv iwig,

we include also in the figure grid-based contour plots of
density and the kinetic energy, relative to the mean flow
the flow develops.

Initially, as suggested by an energy-conservation princ
resembling Bernoulli’s@13# @which states that the energye
1(P/r)1(1/2)v2 is conserved along streamlines#, four pla-
nar rarefaction fans move out, perpendicular to the walls
the confining 2L32L chamber, with a maximum velocity
bit larger than the sound velocityc, and consistent with the
principle

mvmax
2 /25m@e1~P/r!#[2me→vmax52AP/r5A2c.
-
g
d
he

s
e
e

e
s

le

f

The directed kinetic energy generated by the expansion
vacuum is soon ‘‘dissipated,’’ or converted, into quite
regular shorter-wavelength disturbances, by the collision
pairs of periodically repeated rarefaction fans. The time
quired for this energy conversion, at least on a visual leve
very brief, less than a sound traversal time. Because
feature of the solutions is common to all the system sizes
we could investigate, we conclude that it represents
‘‘true’’ solution as well, to the extent that Lyapunov-unstab
~due to turbulence! continuum equations have ‘‘solutions.
True viscous and conductive dissipative transport is only
fective at much longer times, of orderL2/D rather thanL/c.

SPAM, like other grid-based numerical schemes, au
matically includes an intrinsic shear viscosity@14# ~as well as
a related heat conductivity@15#! which depends upon the
number of particles used to describe the flow. In simulatio
for which the kinetic energy allows relatively soft interpe
etrating collisions to occur, Enskog’s high-density kine
theory can be used to estimate the intrinsic viscosity, w
the result@15,16#

h intrinsic5~AmkT/h!~kTh2/mD2!2.

We carried out isoenergetic simulations of the shear visc
ity over a range of strain rates,ė[dux /dy, using the meth-
ods of Ref.@14#. The results are given in Table I, and are, f
the lower strain rates, a bit larger than the Enskog estim
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TABLE I. Shear viscosityh[2Pxy / ė for the Lucy potential withh56Am/r0 and r/r051/4. The data were obtained using 102
particles with a total energy of (N/2)D2r05512D2r0 and a time step 0.005m/(Dr0). The total simulation time ist, of which the last half
was used for determining the viscosity and pressure tensor. The components of the pressure tensor are shown as the sums of
potential contributions. Simulations at reduced strain rates of 0.001 and 0.002 indicate instabilities of the type discussed in Ref.@14#.

tDr0 /m ėm/(D/r0) h/(Dr0) (PxxV/N)D2r0 (PxyV/N)D2r0 (PyyV/N)D2r0

200000 0.0001 28.5 0.358610.1225 20.011410.0000 0.358210.1225
86500 0.0002 27 0.361810.1225 20.021210.0001 0.355110.1225
18000 0.0004 29 0.376310.1224 20.047210.0001 0.341010.1224
20000 0.0005 29 0.400510.1223 20.058210.0001 0.317410.1223
180000 0.0050 7.99 0.516110.1217 20.160610.0007 0.203210.1226
70000 0.0100 4.356 0.554710.1214 20.175010.0008 0.164110.1231
30000 0.0200 2.094 0.599310.1211 20.168410.0009 0.119610.1236
80000 0.0500 0.720 0.646110.1208 20.144710.0008 0.073010.1242
30000 0.1000 0.307 0.670610.1207 20.123410.0006 0.048610.1246
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h519Dr0 . The agreement is similar to that found prev
ously, at a lower temperature, in Ref.@14#.

The present viscosity data differ from those of Ref.@14#
in two ways. First, we are including the self-interactio
mD2w(0)/2, in the per-particle energies here. These w
omitted in Ref.@14#. The increased energy here, about 4%
of little consequence. The densities, energies, and strain
in the present work are in corresponding states with hig
densities, energies, shear viscosities, and strain rates, a
which are increased by a common scale factor. Thus
Enskog shear viscosity, here 19Dr0 at r5r0/4 and kT
50.375D2r0 , must be increased by a factor 4, to 76Dr0 , in
order to describe a corresponding sheared system atr5r0
andkT51.5D2r0 , with a strain rate four times greater. Ta
ing this correspondence into account, the data of Table I
nicely consistent with the relatively-lower-energy data co
piled in Ref. @14#. In Fig. 2 we show all the viscosity data
from both sources, all expressed in units consistent w
those of Ref.@14#.

IncreasingN}L3L, the number of smooth particles rep
resenting a particular macroscopic flow, with fixed values
the SPAM simulation parameters,h, m, and D, causes the
effective Reynolds number of the flow to increase asN1/2,
because the Reynolds number is proportional to the box
L. Over the range of sizes examined here, there was no
dication of a slowing of the dissipation with increasing b

FIG. 2. Shear viscosityh[2Pxy / ė for the Lucy potential with
h53Am/r0 andr5r0 . In order to make the present data comp
rable to those of Ref.@14#, the strain rate and the shear viscos
from Table I, forh56Am/r0, have both been increased, by a fac
4.
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size. In fact, the main entropy increase appears to occu
approximately one sound-traversal time, independent of s
tem size. Very long simulations show only fluctuations
long times, with no tendency for a further systematic entro
increase.

The simplest description of the ideal-gas equilibrium e
tropy, S[Nk ln(e/r), is worthless for this problem, becaus
this entropy is necessarily a constant of the motion

mei5~D2/2!m(
j

wi j [~D2/2!r i ,

where we include the ‘‘self’’wii term in the sum. Evidently
the kinetic energy of the motion, which cannot be dissipa
with inviscid motion equations, must be taken into accou
too. The simplest such ‘‘improvement,’’ adding in th
laboratory-frame kinetic energies of the particles,$mv i

2/2%,
provides a very substantial and wholly unrealistic@1# entropy
increase during the early stages of expansion, where the
tion is adiabatic and reversible, and well before the irreve
ible interaction of the expanding rarefaction fans takes pla
See Fig. 3 for typical time histories of Eulerian ‘‘laborator
frame’’ entropies for a variety of system sizes:

Slab[k(
i

ln$@ei1~v i
2/2!#/r i%.

Evidently this lab-frame entropy already begins to increa
during the earliest stage of the flow, when only near
isentropic rarefaction fans are present.

To avoid the unrealistic, premature entropy increa
shown in these laboratory-frame entropies, it is evident t
the kinetic energies at the locations of the continuum p
ticles, $m^v2&/2%, need to be measured relative to the c
moving ‘‘Lagrangian’’ frames at the particle locations. Th
local kinetic energies of the mean motion,$m^v&2/2%, cannot
contribute to the thermodynamic entropy. Making this su
traction leads to the corresponding ‘‘Lagrangian’’ entrop
shown also in Fig. 3,

SLag5k(
i

ln$@ei1~1/2!Š~v2^v& i !
2
‹i #/r i%.

-
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FIG. 3. Time-development of the ‘‘laboratory-frame’’ entropy~upper curve!, the Lagrangian entropy~lower curve!, and the grid-based
entropy~dots!, for systems of 256, 1024, 4096, 16 384, and 65 536 particles. The time scales show one-half sound traversal time in e
The entropy range shown isNk ln 4 in each case.
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The comoving Lagrangian picture of fluid properties
equivalent to making the assumption of local thermodyna
equilibrium. As Boltzmann pointed out@1#, the correspond-
ing Lagrangian entropy increase is delayed until the rare
tion fans collide with their ‘‘container’’—here represente
by periodic images of the original system.

An alternative version of the comoving entropies, usin
fixed grid rather than the grid made up of moving particl
can be based on smooth-particle entropies evaluated a
fixed grid points:

Sgrid52~k/m!E
2L

1LE
2L

1L

rgln$@eg1~1/2!~^v2&g

2^v&g
2!#/rg%dx dy.

These entropies are also shown in Fig. 3, for five differ
system sizes. With systems of a few thousand particles t
is excellent agreement between the grid-based and part
based averages, as must be true for the validity of
smooth-particle approach. The main physical conclus
from these simulations is independent of the entropy rep
sentation: the coarse-grained entropy increase is substan
complete in a time of the order of the sound traversal tim
Conventional transport processes, which could be inclu
with a slight increase in computational expense, are not v
important to this free-expansion process. Ordinary trans
contributes only a relatively small amount of the irreversib
entropy production.

The two-dimensional nature of our simulations appear
be somewhat artificial, at first glance. But it is interesting
note that our polytropic equation of state, withg[CP /CV
52, corresponds exactly to the dynamics of shallow wa
where the pressure and density are integrated through
thickness of a water film with a perpendicular gravitation
field @17#. Simulations in two dimensions also reduce t
influence of surface effects and facilitate visualization. Th
is no difficulty in carrying out analogous three-dimension
work. In the three-dimensional case it is most ‘‘natural’’
imagine the continuum mechanics of a monatomic ideal
with the polytropic isentropeP}r5/3. The SPAM trajectories
for this macroscopic equation of state are isomorphic
those following from the three-dimensional molecular d
namics of a system with the embedded-atom potentialF:

F~$r i%!}(
i

r i
2/3;H r i[m(
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In this embedded-atom picture,m(w represents an elec
tronic density, into which the nuclei at coordinates$r i% are
embedded@18#.

V. CONCLUSION

The irreversible expansion of an ideal fluid can be d
scribed equally well at the microscopic level of molecu
dynamics and at the macroscopic level of smooth-part
applied mechanics, despite the lack of any dissipative tra
port coefficients in the corresponding continuum model. E
dently the conversion of the energy of compression into h
occurs primarily through processes proceeding at the sp
of sound, rather than through the much slower dissipa
processes of shear viscosity and heat conduction. Prov
that the local velocity fluctuations are included in the intern
energy, the coarse-grained entropy increase described b
reversible thermodynamics is nicely, and simply, accoun
for, and in a way which is insensitive to the number of pa
ticles used in the simulations.

We can use Gibbs’ statistical probabilities to demonstr
an interesting property of smooth-particle simulations
confined free expansions. Gibbs’ microcanonical probab
ties show that the expansions become truly irreversible as
number of particles is increased. Consider the expans
problem illustrated in the figures. For largeN the initial state
approaches that of a motionless solid at zero temperat
Classically, such a many-body cold solid state has an entr
of minus infinity. By contrast, the finalN-particle state ap-
proaches that of a homogeneous fluid, with potential ene
F equal to one-third the kinetic energyK. Classically, such a
many-body hot fluid has a finite entropyS5Nk ln@(V/
N)(K/N)#. Evidently the completely time-reversible smoot
particle approximation to the inviscid nonconducting dyna
ics of an ideal gas introduces a statistical irreversibility ev
stronger than the kinetic-theory probability ratio of (1/4)N.
According to the smooth-particle model, the initial sta
which corresponds to a cold motionless crystal from
standpoint of molecular dynamics, has zero measure in
corresponding classical phase space.

Despite this evident change in Gibbs’ entropy, Liouville
incompressible theorem@2# guarantees no change in th
phase volume occupied by a measurable ensemble of
tems undergoing confined free expansion. It seems poss
that the true entropy increase could be related to the ex
local Kolmogorov entropy~the instantaneous summed pos
tive Lyapunov exponents!, with the excess measured relativ
to the equilibrium Kolmogorov entropy of the final state, b
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a check of this conjecture would require a significant co
putational effort, which we have not yet been able to ma
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