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The eventual entropy increase of an ideal gas undergoing free expanserk In(Vy,/Vy), requires a
“coarse-grained” hydrodynamic description because Gibbs’ fine-grained entropy is unchanged in such a
process. Smooth particle applied mechani8®AM) is well suited to the simulation and study of such
problems because the particles in SPAM simulations can be of any size, from microscopic to macroscopic.
SPAM furnishes a natural interpolation, or bridge, linking microscopic molecular dynamics to macroscopic
continuum mechanics. We analyze particle-based simulations of ideal-gas free expansions from both the
microscopic and the macroscopic points of view, comparing several dynamical estimates for the time devel-
opment of the system entropy. Most of the entropy increase occurs rapidly, within a single sound traversal
time. A local comoving version of turbulent hydrodynamics provides the most useful viewpoint for describing
flows of this kind.[S1063-651X99)07402-4

PACS numbsdss): 47.10+g, 02.70.Ns, 31.15.Qg, 47.70n

I. FREE EXPANSIONS AND ENTROPY . . .
f=0—Sg=—k(d/dt){Inf)= —kJ finfd I'=0.

The “confined free expansion,” which results when a

pressurized fluid is first exposed to a vacuum, and then conrhese difficulties in accounting for increases in entropy us-
fined by a box, is the prototypical irreversible isoenergeticing conventional macroscopic fluid mechanics or micro-
process. During the free expansion and the subsequesggpic statistical mechanics are well-known, currently under
equilibration there is no heat exchange with the system'gctive investigation by researchers in macroscopic turbu-
surroundings and no work is done, establishing that the €Xence and microscopic irreversible floi& 4], and served to
pansion process is adiabatic and isoenergeNE=AQ  motivate our interest in exploring accurate numerical solu-
—AW=0. The initial expansion phase is also nearly isentroions of this problem.
pic, with the gas cooling as it expands. Over 100 years ago, Macroscopic hydrodynamics provides a quantitative esti-
Boltzmann described such expansion processes, emphasizifighte for the irreversible rate of entropy production in terms
that en_trop_y is not generated _until the dire(_:ted motion ofgf the shear and bulk viscositiesy,(7y), and the heat con-
expansion is converted to the disordered motion we call hefﬁuctivity k. Unless the temperature and velocity gradients
[1]. L are too large, the conversion of temperature and velocity
_ Once the system reaches the walls confining it, so that thgiferences into “heat,” or internal energy, can be described
kinetic energy associated with the expansion can be corpy Newtonian viscosity and linear Fourier heat conductivity.
verted to “heat,” an entropy increase occurs. The details ofif e ignore the bulk viscositfwhich is appropriate for a
this increase are what interest us here. We study the expaponatomic ideal gasand additionally assume that the two
sion of a “perfect” or “ideal” gas, with no explicit dissipa-  remaining transport coefficients are state independent, the
tion. Nevertheless, within the system the turbulent decays ofcg| density of the irreversible entropy production from

the macroscopic velocity and temperature gradients give risRewton’s and Fourier’s linear transport laws becomes

to an increasing thermodynamic entropy. With confining ex-

terna_l boundary conditions, which ultimately bring the ex- é=(7;/T)L=2+(K/T2)|VT|2,

pansion to a halt, there eventually results an undoubted

change of state, with a consequent increased entropy. The, - . . _ .

details of the macroscopic turbulent conversion of orderIyWhereE Is an eifective shear strain rate. In. two dimensions,

motion into heat are complex and hard to treat theoreticallyWith the local velocity components=u andy=v, the cor-
Such an irreversible entropy increase is likewise difficultresponding effective shear strain rate is given by

to understand at the microscopic level. When Hamiltonian )

mechanics generates the motion of the individual fluid par- €7=(Uy—vy) %+ (uy+v,)2.

ticles, there can be no change in the system'’s fine-grained

Gibbs’ entropy. This follows from the constancy of the From a more simplified point of view one might expect that

phase-space probability density according to Liouville’s most of the entropy increase would occur locally and discon-

theorem[2]: tinuously, through a complex pattern of interacting shock
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and rarefaction waves which converts most of the kinetic From the macroscopic energy equation for an inviscid

energy of the developing flow directly i.nto heat. ~nonconducting gag=—(P/p)V-v, where the pressuiis
Because the confined free-expansion problem providegow a scalar, rather than a tensor, the smooth-particle equa-

the simplest illustration of the paradoxical properties oftions for the time development of the individual particle in-
Gibbs’ entropy, and can be simulated by a variety of techternal energies arks,7]

nigues relatively easily, we have chosen to explore it here.

We use a robust and flexible numerical method which pro- )

vides simultaneous insight into both the microscopic and [mel=(m2/2)2 [(P/pz)i+(P/p2),-](vi—vj)-Vwij .
macroscopic points of view, namely smooth particle applied !

mechanic§SPAM). In the case of a special two-dimensional . ) ) .
monatomic ideal gas, this macroscopic method for solvingiere & is the internal energy per unit mass for particle
the field equations of continuum mechanics turns out to bd hus, in this special inviscid-gas case, the total endfgy
equivalent to ordinary microscopic molecular dynanfiss ~ +K=mz;[e+(v{/2)] is conserved exactly by the smooth-
This link between the microscopic and macroscopic view-particle equations:

points is described further in Sec. Il. In Secs. lll and IV, we

describe the details of the macroscopic simulations, and the . . ) ) )
results. Our conclusions make up Sec. V. m> (&+viv)=(m /Z)Z 2,“ [(P/p%)i+(Plp%);]

1
X[(vi—vj) = (vi—vj]-Viw;=0.
Il. THE SMOOTH-PARTICLE DESCRIPTION

OF AN IDEAL GAS The total internal energ¥ is the thermodynamic state en-

Smooth-particle solution techniques, as developed bgrgy, and excludes the additional kinetic enekgydue to
Lucy and Monaghan in 197(8,7] and applied more recently convective motions of the gas.
to a variety of problems in fluid and solid mechan(is-10, Note that the special polytropic equation of state,
can be used to solve the continuum equations in a Simpl(f(Dzlzm)pz, gives particle forces precisely equal to the
and stable, way. In this approach the smooth particles, eadtegative gradients of a “weight potential"W({r;;})
with a masam, and with individual velocitiegv;} and inter- EmD22i<jWij(ri,-). Thus, within an additive constant for
nal energie{mg}, move according to equations of motion each particle [the  “self-contributions”  ¢(0)
which contain in them the macroscopic equation of state: =(m D?/2)w;; (0), which do not contribute to the accelera-
tions|, the smooth-particle density sums equal twice the cor-
responding individual smooth-particle internal energy sums,
mr=mo;=—m2>, [(P/p?)i+(Plp?);]-Viwi; i which in turn turn out to be exactly equivalent to each par-
i ticle’s share of the pairwise-additive interaction energies of
Hamiltonian molecular dynamicsb=%,;_;¢(r;;)=m2;e; .
HereP is the pressure tensor amg, =w(r;;) is the smooth-  The weighting functionw(rij) = ¢(r;;)/mD? here plays the
particle “weight function,” which describes the spatial in- "0/€ Of a microscopic pair potential. Thus all of the indi-
fluence of each particle on its surroundings. The range oyidual macroscopic SmO_Oth-partlcle continuum  trajectories
w—typically a few interparticle spacings—is conventionally € Precisely “isomorphic” to corresponding microscopic
denotedh. If the pressure is purely hydrostatic, without shearParticle trajectories calculated with molecular dynamics. The
contributions, as in the two-dimensional ideal gas of interesfVO @pproaches, macroscopic and microscopic, have identi-
here(with E=PV=NKkT), the smooth-particle equations of c&l Solutions[5]. We have chosen the symbbl so as to
motion give central forces, with thij} pair contributions _emphas!ze the units of the arbitrary constant appearing in the
parallel to the corresponding interparticle separation vectorS€Ntropic equation of state. In two space dimensireor-

{rj}. The equilibrium hydrostatic equation of state modu-'SPonds to a diffusion coefficient, the square of a length
lates the pair interaction. The densities of tNeparticles divided by a characteristic time. In three space dimensions

making up the systemip;}, are the summed-up contribu- the correspondin® would vary as the 5/2 power of a length,
tions from all particles within the rangk of the smooth- dain divided by a characteristic time. y
particle weighting functionw(r):{pj=mZ;w(r;;)}. The The microscopic pressure tensor follows from the virial
largest contribution to each particle’s density is its own “self th€orem[11]. The expression which resuits,

contribution,” mw(0).

When the smooth-particle motion equations are multiplied _ pK Dy _ -

by the corresponding particle velocities, and summed up, the PV=PTVHP V—(l/m)}i: (pp)'+i§<:j (rF)i

result is the time-rate-of-change of the laboratory-frame ki-

netic energyk: wherer;;=r;—r; andF;; is the force on particlé due to its

interaction with particlg, can be evaluated using molecular

. . dynamics. For a uniformly dense distribution of particles the
K=Ei moiv; = —mZEi 2}: [(P/p®)i+(P/p?);1:(vV)iw;; sum over pairs of particles approaches an integral:

=—(m?2) Y, X [(PIp?)i+(Plp?)]:(vi—v;)Viw;; . P‘I’V—>(N/2)f:ZWr(NIV)rF(r)dr,
i
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where N/V is the number density of the smooth particles. =6ym/p,, to include several particles, even at the final
With the special hydrostatic macroscopic ideal-gas equatiominimum value of the densityy;n= po/4:

of state,P=(D?/2m)p?, the same integral results, but with , ,

the interparticle forces replaced by—mD?Vw. From the Wiuey(F<h)=(5/h%)[1+3(r/h)][1—-(r/h)]";
normalization of the weight-function integral, A

. . f 2m7rw(r)dr=1.

f 27w drzf —ar?w'dr=1, °

0 0 . . . . .
The two-dimensional normalization condition determines the

the uniform-density limit of the microscopic potential pres- multiplicative constant (5h"). The mass, length, and time
sure,P?®, re roduc){as the complete macrgscc? ic e uaﬁon oi;cales are given by the particle massthe initial square-
o Tep b bic €q attice spacingym/pg, andm/(Dpg), respectively.

state,P=(D?/2m)p?. The remaining kinetic portion of the We simul o 1 ion b .
microscopic pressure tens@®!, corresponds, in the macro- € 5|m_u.ate a macroscopic Iree expansion by removing
i ' the four rigid reflecting walls defining ah XL box. We

scopic hydrodynamic interpretation, to a local turbulent Rey-_. . . Con . .
simultaneously impose(i eriodic boundaries with a
nolds stress;- oreynolas= Pl (vv) —(v){(v)] [12]. y impose(i) p

Apart from an additive constant, the macroscopic ideal—dOUbIeOI sidelength 12, so that the volumeareq increases

gas entropy iNk In[(V/N)(E/N)]. We will see that solutions Instantaneously, at constant energy, by a factor 4, @nd

of the inviscid nonconducting Euler equations for the motionSmall random particle velocities, with zero sum, chosen so
. g euler eq .~ that the initial energy per particle is exactly equal to the
of such a gas require an additional turbulent correction

- 1 i I = 2 i i
based on local velocity fluctuations, to the internal energygg]%gzzftg]s sftg?ctr:gnnsEréla\lI” r/‘JnOistiiwzgi Izsrgggtlgneer:gggy of

used in this entropy formula. The macroscopic entropy i . LS
quite different from that following from Gibbs’ statistical Stgisioiar#ﬂgslggg\le ;%;:Eerb%l:ns;g g; Ji[zteerlggtlia:llg”g]:r—

mechanics. In Gibbs’ approach, where the potential energy —_——

of the u'nderlying sm'ooth-particle fluid is essenti.ally Con_ﬁglNeS'dLorirngN{t Xg_e?/ghggﬁrigvs\;f dfr?r?; allg\?v:tr[?j%?ls?[?/oﬁtnal
lstantr,] Gibbs entropy |Blkln[(Vé;\ll1(IKélell)],)anﬂ thurs] ILES be- state. Provided that the final state has uniform deng4

ow the macroscopic entropy n(E/K). Though this en- ) . ) i ) -
tropy difference does not affect the systematic macroscopi ic;:;,\stﬁ;ngueorgyogfeg:égz)//8pgilﬁfihzntrzgﬁrﬁgjsngm?frs-tpair(tjlf:le

dynamics at all, it does affect fluctuations, as well as recur-"". ¢ Id also h to find di i
rence probabilities, in interesting ways, as is discussed fuROINt we would also hope 1o find a corresponding entropy

ther below increase ok In4 per particle, when the kinetic energy asso-

The smooth-particle solutions necessarily approach thos%pated with the irreversible expansion has finally been con-

of continuum mechanics as the number of particles is in_verted into heat. In the absence of any explicit dissipative

creased. To approach this limit computationally, it is neces;rfa;nsportén the 9as webexpfecr: the dchar;acrt]erlstm t:jme for th?
sary that the range of the weight function be sufficientlye ective dissipation to be of the order of the sound traversa

large, so that fluctuations can be ignored and, simultatime, 2L/c. We investigate this expectation, and the sensi-

neously, sufficiently small that surface effects can be igtVity of the decay to the number of smooth particles, in the

nored. We have explored both these effects in simulating th&!lOWing section.
free expansion of a two-dimensional ideal-gas represented by

smooth particles. IV. SIMULATIONS AND RESULTS
For simplicity, we begin with a square lattice of initial
. MACROSCOPIC SIMULATIONS particle coordinates, with the lattice spacing gMm/pg
OF FREE EXPANSION USING SPAM =.Vo/N=1 setting the distance scale. We choose the par-

ticle masan=1 and the constitutive constabt=1 to set the
corresponding mass and time scales in the numerical work.
In order to quantify surface effects, it is convenient to con-
sider the series of simulationdN=2";4<n=<8. Although it

is possible to equilibrate the systems initially, either at con-
stant energy or at constant kinetic temperature, and with ei-
reduces to the solution of a set of ordinary differential equather rigid or periodic boundaries, results for our simpler ini-
tions for the particle motions and energies, with interparticlesja| conditions are in no way essentially different from those
forces derived from the weight functiofsv;(r;;)} and the  other possibilities. We also implemented hexagonal periodic
macroscopic equation of state. In the special ideal-gas cagfyundaries and carried out a series of fourfold expansions.
we consider here, viscosity and heat conduction are botfrhe resulting time histories were very similar to those ob-
absent, so that the heat ﬂl.Q vanishes and the pressure is tained with the S||ght|y Simp|er sguare geometry_
hydrostatic, withP,x= P,,= P = pe=(D?/2m)p?®. The mac- We solved the smooth-particle equations of motion with
roscopic energy equation is automatically satisfied in thisan accurate fourth-order Runge-Kutta integrator. Time steps
case, so that thfe;} equations need not be solved explicitly. of 0.02n/(pyD), or even 0.0B/(pgD), are sufficiently
Exploratory simulations, with an assortment of boundarysmall for accurate trajectories, as judged by reversing the
conditions and weight functions, led us to choose Lucy’'smotion over several hundred time steps. Larger systems
weight function [6], with the rangeh large enough,h could be simulated relatively easily, on parallel machines,

With SPAM, a solution of the partial differential field
equations of continuum mechanics,

{plp=-V-v;pv=—V -P;pe=—Vuv:P-V-Q},
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FIG. 1. Snapshots of a 16 384-particle simulation of the fourfold expansion of an ideal gas, using Lucy’s weighting function with
=6+m/py. The individual particle locations, as well as grid-based contour representations of the density and kinetic energy, relative to the
mean flow, are shown at times, relative to the sound traversal timgl/8f1/4,1/2,1,2 In the contour plots the white regions have
above-average densityniddle row or kinetic energy(bottom row while the black regions lie below the corresponding averages.

but the details are already sufficiently clear with the 65 536-The directed kinetic energy generated by the expansion into
particle simulations possible on a serial machine. Duringvacuum is soon “dissipated,” or converted, into quite ir-
each simulation, we monitored the positions, internal andegular shorter-wavelength disturbances, by the collisions of
convective energies, and the corresponding entropies of thgairs of periodically repeated rarefaction fans. The time re-
particles, as is discussed below. quired for this energy conversion, at least on a visual level, is
Figure 1 shows a series of snapshots of particle positiongery brief, less than a sound traversal time. Because this
from a typical simulation, with 16 384 particles. Because thefeature of the solutions is common to all the system sizes that
smooth-particle method makes it easy to calculate all thguve could investigate, we conclude that it represents the
field variables on a regular grid, “true” solution as well, to the extent that Lyapunov-unstable
(due to turbulencecontinuum equations have ‘“solutions.”
True viscous and conductive dissipative transport is only ef-
fective at much longer times, of ordef/D rather tharl/c.
SPAM, like other grid-based numerical schemes, auto-
_ E o matically includes an intrinsic shear viscodifyf] (as well as
(prv)g=m2, viviWig, a related heat conductivitjl5]) which depends upon the
number of particles used to describe the flow. In simulations
we include also in the figure grid-based contour plots of thefor which the kinetic energy allows relatively soft interpen-
density and the kinetic energy, relative to the mean flow, agtrating collisions to occur, Enskog’'s high-density kinetic
the flow develops. theory can be used to estimate the intrinsic viscosity, with
Initially, as suggested by an energy-conservation principlehe resulf15,16]
resembling Berr;oulli’s[lS] [which states that the energy
+(P/p) +(1/2)v“ is conserved along streamlijefour pla- PN ey ) 212
na(r ra{)rzafa(ctio% fans move out, perp?endicular to the Svalls of Tinwrinsic= (NMKT/R) (KR /m D7)

the confining 2 X 2L chamber, with a maximum velocity a ) . o . .
bit larger than the sound velocity and consistent with the e carried out isoenergetic simulations of the shear viscos-

principle ity over a range of strain rates=du,/dy, using the meth-
5 ods of Ref[14]. The results are given in Table |, and are, for
Mo 2 /2=m[e+(P/p)]=2me—uv .= 2\/Plp=1/2c. the lower strain rates, a bit larger than the Enskog estimate,

szmzi Wig ;(Pv)gEmEi ViWig s
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TABLE I. Shear viscosityr/E—ny/é for the Lucy potential withh=6+m/py and p/py=1/4. The data were obtained using 1024
particles with a total energy oN/2)D?p,=512D2p, and a time step 0.00& (D p,). The total simulation time is, of which the last half
was used for determining the viscosity and pressure tensor. The components of the pressure tensor are shown as the sums of kinetic anc
potential contributions. Simulations at reduced strain rates of 0.001 and 0.002 indicate instabilities of the type discussé¢tidin Ref.

D po/m ;Em/(D/pO) 7/(Dp0) (PxxV/N)DZPO (nyV/N)DZPO (Pny/N)D2p0
200000 0.0001 28.5 0.358@.1225 —0.0114+0.0000 0.3582 0.1225
86500 0.0002 27 0.36180.1225 —0.0212+0.0001 0.355%0.1225
18000 0.0004 29 0.37630.1224 —0.0472+0.0001 0.34160.1224
20000 0.0005 29 0.40050.1223 —0.0582+0.0001 0.31740.1223
180000 0.0050 7.99 0.51610.1217 —0.1606+ 0.0007 0.2032 0.1226
70000 0.0100 4.356 0.5540.1214 —0.1750+ 0.0008 0.164%0.1231
30000 0.0200 2.094 0.5993.1211 —0.1684+0.0009 0.1196-0.1236
80000 0.0500 0.720 0.64610.1208 —0.144'#+0.0008 0.0736-0.1242
30000 0.1000 0.307 0.676@.1207 —0.1234+0.0006 0.0486-0.1246

n=19Dp,. The agreement is similar to that found previ- size. In fact, the main entropy increase appears to occur in
ously, at a lower temperature, in R¢L4]. approximately one sound-traversal time, independent of sys-
The present viscosity data differ from those of Rd#4| tem size. Very long simulations show only fluctuations at
in two ways. First, we are including the self-interaction, long times, with no tendency for a further systematic entropy
mD?w(0)/2, in the per-particle energies here. These weréncrease.
omitted in Ref[14]. The increased energy here, about 4%, is The simplest description of the ideal-gas equilibrium en-
of little consequence. The densities, energies, and strain raté®py, S=NKkIn(e/p), is worthless for this problem, because
in the present work are in corresponding states with highethis entropy is necessarily a constant of the motion
densities, energies, shear viscosities, and strain rates, all of
which are increased by a common scale factor. Thus the
Enskog shear viscosity, here DB, at p=py/4 and KT
=0.379D?p,, must be increased by a factor 4, taV&,, in
order to desczrlbe a corresponding sheared systep=aly  \here we include the “self'w;; term in the sum. Evidently
andkT=1.8Dp,, with a strain rate four times greater. Tak- (¢ kinetic energy of the motion, which cannot be dissipated
ing this correspondence into account, the data of Table | argi, inviscid motion equations, must be taken into account
nicely consistent with the relatively-lower-energy data com-,5  The simplest such “improvement,” adding in the

piled in Ref.[14]. In Fig. 2 we show_ all th_e viscosity data,- laboratory-frame kinetic energies of the particlésw?/2},

from both sources, all expressed in units consistent W'ﬂbrovidesavery substantial and wholly unreali§fi¢entropy

those of R_ef[14]. . increase during the early stages of expansion, where the mo-
IncreasingNL XL, the number of smooth particles rep- ion is adiabatic and reversible, and well before the irrevers-

rﬁseggEMa partllcu_lar macroscopgc flow, Vé'tg fixed vaIUﬁs %%ble interaction of the expanding rarefaction fans takes place.
the S| simulation parameters, m, andD, causes the  geq Fig. 3 for typical time histories of Eulerian “laboratory-
effective Reynolds number of the flow to increaseNd¥, frame” entropies for a variety of system sizes:

because the Reynolds number is proportional to the box size
L. Over the range of sizes examined here, there was no in-
dication of a slowing of the dissipation with increasing box

me=(D%2)m2 w;=(D?/2)p;,
J

Sa=k>, In{[ej+(v712)1/p;}.

1000 T T Y
E/N=20
—

Evidently this lab-frame entropy already begins to increase
during the earliest stage of the flow, when only nearly-
isentropic rarefaction fans are present.

To avoid the unrealistic, premature entropy increase
shown in these laboratory-frame entropies, it is evident that
the kinetic energies at the locations of the continuum par-
ticles, {m(v?)/2}, need to be measured relative to the co-
001 . . . moving “Lagrangian” frames at the particle locations. The
00001 0.001 0.01 01 1 local kinetic energies of the mean motigmy(v)%/2}, cannot

€ contribute to the thermodynamic entropy. Making this sub-
traction leads to the corresponding “Lagrangian” entropy,
shown also in Fig. 3,

100 +

n
ol 19 \ 1
1 0.5 7
o1 | ’_ﬁ#“\

FIG. 2. Shear viscosity)=— P, /e for the Lucy potential with
h=3ym/py andp=pg. In order to make the present data compa-
rable to those of Refl14], the strain rate and the shear viscosity
from Table I, forh=6+m/p,, have both been increased, by a factor

4. Stag=k Inlei+ (124w = (0)) /i)
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N=1024

N= 256

..... 7 N= 65536

Lo/ N=16384

FIG. 3. Time-development of the “laboratory-frame” entrofiypper curvg the Lagrangian entropflower curve, and the grid-based
entropy(dots, for systems of 256, 1024, 4096, 16 384, and 65 536 particles. The time scales show one-half sound traversal time in each case.
The entropy range shown $kin 4 in each case.

The comoving Lagrangian picture of fluid properties isIn this embedded-atom picturen=w represents an elec-
equivalent to making the assumption of local thermodynamigronic density, into which the nuclei at coordinates} are
equilibrium. As Boltzmann pointed oyilL], the correspond- embedded18].

ing Lagrangian entropy increase is delayed until the rarefac-

tion fans collide with their “container’—here represented V. CONCLUSION

by periodic images of the original system.

An alternative version of the comoving entropies, using a The irreversible expansion of an ideal fluid can be de-
fixed grid rather than the grid made up of moving particles,SCFibed equally well at the microscopic level of molecular
can be based on smooth-particle entropies evaluated at tifynamics and at the macroscopic level of smooth-particle
fixed grid points: applied mechanics, despite the lack of any dissipative trans-

port coefficients in the corresponding continuum model. Evi-

FL 4L dently the conversion of the energy of compression into heat

Syria= —(k/m)f f pgln{[eg+(1/2)((1)2)g occurs primarily through processes proceeding at the speed
-t of sound, rather than through the much slower dissipative
—(v)é)]/pg}dx dy. processes of shear viscosity and heat conduction. Provided

that the local velocity fluctuations are included in the internal
energy, the coarse-grained entropy increase described by ir-
treversible thermodynamics is nicely, and simply, accounted
r, and in a way which is insensitive to the number of par-
cles used in the simulations.

We can use Gibbs’ statistical probabilities to demonstrate
interesting property of smooth-particle simulations of
onfined free expansions. Gibbs’ microcanonical probabili-
s show that the expansions become truly irreversible as the
umber of particles is increased. Consider the expansion

roblem illustrated in the figures. For lartethe initial state
pproaches that of a motionless solid at zero temperature.
lassically, such a many-body cold solid state has an entropy
of minus infinity. By contrast, the find\-particle state ap-
roaches that of a homogeneous fluid, with potential energy
equal to one-third the kinetic energfy Classically, such a
many-body hot fluid has a finite entrop$=NKkIn[(\V/

—2, corresponds exactly to the dynamics of shallow WaterN)(K/N)]. Evidently the completely time-reversible smooth-

where the pressure and density are integrated through ﬂf)artlcle approximation to the inviscid nonconducting dynam-

thickness of a water film with a perpendicular gravitational Es of an ideal gas introduces a statistical irreversibility even
field [17]. Simulations in two dimensions also reduce thestronger than the kinetic-theory probability ratio of (1/4)

) i . o According to the smooth-particle model, the initial state,
influence of surface effects and facilitate visualization. ThereWhiCh corresponds to a cold motionless crystal from the

is no difficulty in carrying out analogous three-dimensional . . .
work. In the three-dimensional case it is most “natural” to standpoint of molecular dynamics, has zero measure in the
: corresponding classical phase space.

imagine the continuum mechanics of a monatomic ideal gas Despite this evident change in Gibbs’ entropy, Liouville’s

. - . 5/3 - .
with the polytropic isentrop®e:p - The SPAM trajectories incompressible theoremi2] guarantees no change in the
for this macroscopic equation of state are isomorphic to

. . . h volum i m rable ensemble of -
those following from the three-dimensional molecular dy-p ase volume occupied by a measurable ensemble of sys

. . : tems undergoing confined free expansion. It seems possible
hamics of a system with the embedded-atom potedtil that the true entropy increase could be related to the excess

local Kolmogorov entropythe instantaneous summed posi-
O 1) 280 5 =mS w(r )b tive Lyapu.n_ov. exponentswith the excess mea;ured relative
(i Z P P ; (") to the equilibrium Kolmogorov entropy of the final state, but

These entropies are also shown in Fig. 3, for five differen
system sizes. With systems of a few thousand particles the
is excellent agreement between the grid-based and particlq?I
based averages, as must be true for the validity of the
smooth-particle approach. The main physical conclusior}m
from these simulations is independent of the entropy repre-
sentation: the coarse-grained entropy increase is substantia
complete in a time of the order of the sound traversal time
Conventional transport processes, which could be include
with a slight increase in computational expense, are not ver
important to this free-expansion process. Ordinary transpor,
contributes only a relatively small amount of the irreversible
entropy production.

The two-dimensional nature of our simulations appears t
be somewhat artificial, at first glance. But it is interesting to
note that our polytropic equation of state, witgh=Cp/C,,
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a check of this conjecture would require a significant com-provided us with very useful technical advice. Carol Hoover
putational effort, which we have not yet been able to makecarried out simulations with a parallel version of our com-
puter program. Work at the Lawrence Livermore National
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